Molecular Packing Modes. Part VIII. ${ }^{1}$ Crystal and Molecular Structures of But-3-ynoic Acid

By V. Benghiat and L. Leiserowitz,* Department of Chemistry, The Weizmann Institute of Science, Rehovot, Israel

The title compound crystallises in space group $P \mathrm{Ca} 2_{1}$ with two molecules in the asymmetric unit, the cell having dimensions $a=8.060, b=4 \cdot 195 . c=25.433 \AA$. The phases were determined from a diffractometer data by a multi-solution method and the structure refined by a least-squares procedure to $R 0.067$ for 968 independent reflections. The bond lengths are $\mathrm{C} \equiv \mathrm{C} 1 \cdot 175,1 \cdot 179$: $\equiv \mathrm{C}-\mathrm{C} 1 \cdot 455.1$-453: $\mathrm{C}-\mathrm{CO}_{2} \mathrm{H} 1 \cdot 484.1 \cdot 506: \mathrm{C}=\mathrm{O} 1 \cdot 221$. $1 \cdot 214$: $\mathrm{C}-\mathrm{OH} 1 \cdot 307.1 \cdot 259 \mathrm{~A}$. The $\mathrm{C}(: \mathrm{O}) \cdot \mathrm{C} \cdot \mathrm{C}: \mathrm{C}$ system is syn-planar.
The molecules are hydrogen-bonded ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O} 2 \cdot 69$ and $2 \cdot 65 \AA$) in pseudo-centrosymmetric pairs. In the crystal there are no intermolecular ethynyl- $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ interactions: rather, the acetylenic $\mathrm{C}-\mathrm{H}$ bond points at the $\mathrm{C} \equiv \mathrm{C}$ triple bond. $\left[\mathrm{H} \cdots \mathrm{C}: \mathrm{C}\right.$ (midpoint) $3.0 \AA$]. The $\mathrm{C}\left(s p^{3}\right)-\mathrm{H} \cdots$ bond is directed towards the carbonyl oxygen ($\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 3 \cdot 45$, and $\mathrm{H} \cdots \mathrm{O} 2 \cdot 6 \AA$).
But-3-ynoic acid also appears in a pseudo-orthorhombic form showing order-disorder. The relationship of the two forms is discussed.

The crystal structure analysis of but-3-ynoic acid (I) was undertaken as part of a study on the packing modes of carboxylic acids.

(I) Labelling of atoms in the present analysis. The atoms of the second molecule in the asymmetric unit are primed

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{2}, \quad M=84 \cdot 4, \quad$ m.p. $82-84{ }^{\circ} \mathrm{C}$. (i) Orthorhombic form: $a=8.060(1), \quad b=4.195(1)$, $c=25 \cdot 433(1) \quad \AA, \quad U=850.9 \quad \AA^{3}, \quad D_{\mathrm{m}}=1.32, \quad Z=8$, $D_{\mathrm{c}}=1 \cdot 30, F(000)=352$. Space group $P c a 2_{1}$ or Pcam (the former established as correct by the present analysis) from systematic absences $0 k l$ for l odd, $h 0 l$ for h odd. Mo- K_{α} radiation, $\lambda=0.70926 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=1 \mathrm{~cm}^{-1}$. (ii) Pseudo-orthorhombic form: The cell constants ($a_{\mathrm{p}}, b_{\mathrm{p}}$, c_{p}) are given in terms of the $P c a 2_{1}$ form (a, b, c),$a_{\mathrm{p}}=a$, $b_{\mathrm{p}}=b, \quad c_{\mathrm{p}}=2 c$, Pseudo-selection rules: $0 k l l=4 n$; $h 0 l h=2 n, l=2 n ; h k l h=2 n, l=2 n ; h k l h=2 n+1$, $l=2 n, l=2 n+1$.

Crystals were obtained by slow room-temperature evaporation from chloroform solution. The X-ray diffraction photographs showed orthorhombic symmetry, but with systematic absences not matched by any of the orthorhombic space group conditions, and with diffuse streaks along particular reciprocal row-lines. The diffraction spectra with $h=2 n$ were sharp maxima and present for $l=2 n$ only, whereas for $h=2 n+1$ there were diffuse streaks parallel to c^{*} and with no restrictions on l. These features indicated pseudo-orthorhombic symmetry and an order-disorder (O/D) structure.

By growing crystals from an unsaturated chloroform solution which was slowly cooled to the temperature of dry ice $\left(-78{ }^{\circ} \mathrm{C}\right)$ eliminated almost completely, in some crystals, the pseudo-orthorhombic diffraction pattern. However, the X-ray photographs still showed diffuse streaks the intensity of which varied from specimen to specimen with some crystals showing little or none. The X-ray spectra possessed mmm symmetry, showed a halving of the c axis of the pseudo-cell, and selection rules consistent with Pca symmetry. The diffraction spectra of this structure and the O / D structure were almost identical for $h=2 n$, and exhibited the same regional variation in intensity along
${ }^{1}$ Part VII, V. Benghiat, L. Leiserowitz, and G. M. J. Schmidt, preceding paper.
c^{*} for reciprocal lines $h k l$ where $h=2 n+1$. No observable O/D effects were observed in crystals grown from benzene or light petroleum.
Data Collection.-Lattice constants of the Pca structure were determined by a least-squares method from 19 highorder ($20>120^{\circ}$) spectra measured on a General Electric diffractometer ($\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$).
As the material tended to deteriorate in air the crystal used for intensity measurements was enclosed in a Linde-mann-glass capillary. The specimen, of dimensions 0.34 , $0.50,0.38$, and 1.10 mm (bounded by faces $001,001,010$, $0 \overline{1} 0,0 \overline{1} 2,01 \overline{2}, 100$, and $\overline{100}$), was mounted along a^{*} on an IBM 1800 controlled Siemens three-circle diffractometer. ${ }^{2}$ $I(h k l)$ and $I(h k l)$ were recorded for $\sin \theta / \lambda \leqq 0.65$ with Mo- K_{α} radiation filtered by a set of balanced zirconium and yttrium metal foils. Our procedure for intensity measurements and data processing, ${ }^{3}$ was slightly modified: instead of performing both an intensity and a background $\omega-20$ scan for each filter (Zr, Y), the background was derived from the first and last four measurements of the intensity profile step-scan. Absorption corrections ${ }^{4}$ were applied in the data reduction routine. 968 Independent reflections were recorded of which 175 were treated as unobserved.
Structure Determination.-Either space group Pca2 2_{1} or Pcam is compatible with the reflection conditions. This ambiguity was resolved both by packing considerations, indicating the presence of the mirror plane m as unlikely, and by the statistical ${ }^{5} N(z)$ test which favoured the noncentrosymmetric space group Pca2 ${ }_{1}$. The structure was solved by an application ${ }^{6}$ of the multi-solution phasedetermination method ${ }^{7}$ based on the $\tan \phi$ formula. ${ }^{8}$

Table 1
Initial phase set used for the multi-solution phase determination method

	h	k	l	Phase/radians	E
Origin-defining	1	1	0	0	$3 \cdot 39$
set	2	1	0	0	$2 \cdot 63$
	6	2	1	$\pi / 2$	$1 \cdot 83$
Starting phases *	1	1	1	$\pm \pi / 6, \pm \pi / 2, \pm 5 \pi / 6$	$3 \cdot 13$
	2	1	1	$\pm \pi / 6, \pm \pi / 2, \pm 5 \pi / 6$	$2 \cdot 89$
	3	2	2	$\pi / 6, \pi / 3$	$2 \cdot 10$
	3	2	15	$\pm \pi / 4, \pm 3 \pi / 4$	$2 \cdot 05$

* For implementation of the $\tan \phi$ formula.

Three appropriate phases were assigned to fix the origin. Four additional reflections were chosen each with a set of starting phases (Table 1). Thus, from an initial group of seven given phases, the phase angles of 100 reflections with the highest E values were determined for each of the 288 models. The phases of each of 40 models with the highest figure of merit C^{7} were then utilised to generate the phases of 240 reflections. An E-map computed using the phases of the model with the lowest R index ($0 \cdot 33$), and which also had the highest C, yielded a structure in which the two molecules of the asymmetric unit formed a pseudo-centrosymmetric hydrogen-bonded pair.

* For details see Notice to Authors No. 7 in J. Chem. Soc. (A), 1970. Issue No. 20 (items less than 10 pp . are supplied as full size copies).
${ }^{2}$ L. Leiserowitz, Z. Krist., in the press.
${ }^{3}$ H. Irngartinger, L. Leiserowitz, and G. M. J. Schmidt, J. Chem. Soc. (B), 1970, 497.
${ }_{4}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.

This structure was refined first with individual isotropic thermal parameters, and then with anisotropic thermal parameters. All hydrogen atoms were then inserted at chemically reasonable positions, and their positional and isotropic thermal parameters refined. The final R is 0.067 and $\quad R^{\prime} \quad 0.01 \quad\left[R^{\prime}=\Sigma w\left(k^{2} F_{\mathrm{o}}^{2}-\left|F_{\mathrm{c}}\right|^{2}\right)^{2} / \Sigma w k^{4} F_{\mathrm{o}}^{4}\right]$. A $\delta(x y z)$ synthesis, based on all atoms except the hydroxylic hydrogens, was computed in the plane of the pseudocentrosymmetric carboxy-dimer (II) to confirm their locations (Figure 1).

Figure 1 Electron density difference synthesis in the plane of the carboxy-dimer. Full, dashed, and dotted lines correspond to positive, zero, and negative contours at intervals of $0.05 \AA^{-3}$

(III)

The scattering factor curves used for hydrogen, carbon, and oxygen were taken from ref. 9. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20328 (3 pp., 1 microfiche).*

RESULTS AND DISCUSSION

Table 2 lists the positional and thermal parameters and their estimated standard deviations.

Molecular Shape.-The deviations from the best planes through various groups of the two molecules (primed and unprimed) are given in Table 3. The heavy atoms of the carboxy $[\mathrm{C} \cdot \mathrm{C}(\mathrm{OH}): \mathrm{O}]$ and propynyl $\left(\mathrm{H} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{CH}_{2} \mathrm{C}\right)$ groups of each of the two molecules are planar to within $0.017,0.008,0.004$, and $0.012 \AA$. The molecules are not completely planar: the dihedral angles between the planes of the carboxy and propynyl groups are 8.3 and 8.8°, and are mostly due to a twist about each $\mathrm{C}\left(s p^{3}\right)-\mathrm{CO}_{2} \mathrm{H}$ bond. Intramolecular repulsive forces between the carbonyl oxygen and the $\mathrm{C}: \mathrm{C}$ triple bond may be responsible for the displacement of the triple bond from the plane of the carboxy-group. In the structure of the related cyanoacetamide, ${ }^{10}$ the
${ }^{5}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., 1950, 3, 210.
${ }^{6}$ H. W. Kaufman and L. Leiserowitz, Acta Cryst., 1970, B, 26, 422.
${ }^{7}$ G. Germain and M. M. Woolfson, Acta Cryst., 1968, B, 24, 91.
${ }^{8}$ J. Karle and I. L. Karle, Acta Cryst., 1966, 21, 849.
9 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, p. 202.
${ }_{10}$ P. C. Chieh and J. Trotter, J. Chem. Soc. (A), 1970, 184.
$\mathrm{C}: \mathrm{N}$ bond is also displaced from the amide plane, the torsion angles in the two molecules of the asymmetric unit being 3 and 13° respectively.

Table 2
(a) Atomic co-ordinates (fractional) and standard deviations referred to axes a, b, c

Atom	x	y	z
$\mathrm{O}(1)$	0.5496(5)	$0 \cdot 9432(10)$	$0 \cdot 0396(0)$
$\mathrm{O}(2)$	$0 \cdot 3548(4)$	0.6146(10)	0.0106(2)
$\mathrm{O}\left(1^{\prime}\right)$	$0 \cdot 2225$ (6)	$0 \cdot 5560$ (10)	$0 \cdot 1073$ (1)
$\mathrm{O}\left(2^{\prime}\right)$	$0 \cdot 4163$ (4)	$0 \cdot 8841$ (9)	$0 \cdot 1342$ (2)
C(1)	$0 \cdot 4735$ (5)	$0 \cdot 7880$ (10)	$0 \cdot 0022(3)$
C(2)	0.5495 (6)	0.8270(13)	-0.0506(2)
$\mathrm{C}(3)$	$0 \cdot 4539$ (5)	0.6887(11)	-0.0934(3)
C(4)	$0 \cdot 3764(8)$	$0.5708(16)$	-0.1273(3)
$\mathrm{C}\left(1^{\prime}\right)$	$0 \cdot 2969$ (5)	$0.7144(10)$	$0 \cdot 1422$ (2)
$\mathrm{C}\left(2^{\prime}\right)$	$0 \cdot 2195$ (5)	0.6733(13)	$0 \cdot 1956(2)$
$\mathrm{C}\left(3^{\prime}\right)$	$0.3133(5)$	$0 \cdot 8169(11)$	$0 \cdot 2383(3)$
$\mathrm{C}\left(4^{\prime}\right)$	$0 \cdot 3885$ (8)	0.9246(17)	$0 \cdot 2739(3)$
H(1)	$0 \cdot 509(11)$	0.854(22)	$0 \cdot 072(4)$
H(2)	$0 \cdot 666(6)$	$0.743(11)$	-0.049(2)
$\mathrm{H}(3)$	0.579 (8)	1.012(14)	$-0.053(4)$
H(4)	$0 \cdot 318(9)$	$0.519(17)$	-0.157(4)
$\mathrm{H}\left(\mathbf{l}^{\prime}\right)$	0.286(7)	0.547(12)	0.077(3)
$\mathrm{H}\left(2^{\prime}\right)$	$0 \cdot 109(7)$	$0 \cdot 800$ (12)	$0 \cdot 191$ (2)
$\mathrm{H}\left(3^{\prime}\right)$	$0 \cdot 205(6)$	$0 \cdot 475$ (12)	0.203(2)
$\mathrm{H}\left(4^{\prime}\right)$	0.455(8)	1.054(15)	$0 \cdot 300(3)$

(b) Observed thermal parameters $u^{i j}$ and standard deviations referred to axes a, b, c

Atom	u^{11}	u^{22}	u^{33}
$\mathrm{O}(1)$	$0 \cdot 0912(27)$	$0 \cdot 0930(25)$	0.0426(21)
$\mathrm{O}(2)$	$0 \cdot 0692(19)$	$0 \cdot 1027(24)$	$0 \cdot 0471(20)$
$\mathrm{O}\left(\mathbf{1}^{\prime}\right)$	$0 \cdot 0941$ (27)	$0 \cdot 0992(27)$	$0 \cdot 0510(27)$
$\mathrm{O}\left(2^{\prime}\right)$	$0 \cdot 0689(18)$	$0 \cdot 0998(24)$	$0 \cdot 0484(20)$
$\mathrm{C}(1)$	$0 \cdot 0518(23)$	$0 \cdot 0496(23)$	$0 \cdot 0401(23)$
C(2)	$0 \cdot 0675(32)$	$0 \cdot 0637(29)$	$0 \cdot 0444(24)$
$\mathrm{C}(3)$	$0 \cdot 0550(24)$	$0 \cdot 0648(27)$	$0.0392(25)$
C(4)	$0 \cdot 0775(36)$	$0 \cdot 1024(42)$	$0 \cdot 0452(33)$
$\mathrm{C}\left(1^{\prime}\right)$	$0.0527(23)$	$0.0491(23)$	$0.0387(22)$
$\mathrm{C}\left(2^{\prime}\right)$	$0.0568(28)$	$0.0602(30)$	$0 \cdot 0465(25)$
$\mathrm{C}\left(3^{\prime}\right)$	$0.0551(26)$	$0.0703(28)$	$0 \cdot 0424(26)$
$\mathrm{C}\left(4^{\prime}\right)$	$0 \cdot 0825(37)$	0.1096(41)	$0 \cdot 0450$ (34)
Atom	u^{12}	u^{23}	u^{13}
$\mathrm{O}(1)$	-0.0312(21)	$0 \cdot 0010(21)$	$-0.0033(18)$
$\mathrm{O}(2)$	-0.0276(22)	$-0.0103(22)$	$0 \cdot 0062(16)$
$\mathrm{O}\left(1^{\prime}\right)$	-0.0394(23)	-0.0222(21)	$0 \cdot 0075(19)$
$\mathrm{O}\left(2^{\prime}\right)$	-0.0253(20)	-0.0124(22)	$0 \cdot 0047(17)$
C(1)	$0.0073(19)$	$-0.0005(20)$	$-0.0014(20)$
C(2)	-0.0057(25)	$0 \cdot 0026(25)$	-0.0045(22)
C(3)	0.0016(20)	$0 \cdot 0065(20)$	$0 \cdot 0049(21)$
C(4)	-0.0096(33)	$0 \cdot 0037(36)$	$0 \cdot 0012(29)$
$\mathrm{C}\left(1^{\prime}\right)$	$0 \cdot 0079$ (20)	-0.0046(19)	$-0.0080(20)$
$\mathrm{C}\left(2^{\prime}\right)$	-0.0061(23)	$0 \cdot 0019(22)$	$0 \cdot 0027(22)$
$\mathrm{C}\left(3^{\prime}\right)$	$0 \cdot 0060(21)$	$0 \cdot 0091$ (22)	$0 \cdot 0051(22)$
$\mathrm{C}\left(4^{\prime}\right)$	-0.0121(37)	-0.0029(34)	-0.0053(29)
Atom	U	Atom	U
$\mathrm{H}(1)$	0.129(28)	$\mathrm{H}\left(1^{\prime}\right)$	$0 \cdot 045(16)$
$\mathrm{H}(2)$	$0.042(12)$	$\mathrm{H}\left(\mathbf{2}^{\prime}\right)$	0.045 (13)
$\mathrm{H}(3)$	0.067(22)	$\mathrm{H}\left(3^{\prime}\right)$	$0.027(15)$
H(4)	0.092(29)	$\mathrm{H}\left(4^{\prime}\right)$	0.053(18)

The $\mathrm{C}=\mathrm{O}$ bond of the carboxy-group adopts the s-cis conformation with respect to the propynyl chain $\mathrm{H}_{2} \mathrm{C} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{H}$, in accordance with the rule ${ }^{11,12}$ governing the conformation of the terminal groups of acids, amides, and esters.

Bond Lengths and Angles.-Figure 2 shows the

[^0]experimental molecular dimensions. The mean σ value for the bond lengths is $0.008 \AA$, and for angles 0.6°; the corresponding values where one hydrogen atom is involved, are $0 \cdot 1 \AA$ and 4°. The root-meansquare of the differences between equivalent bonds of the two crystallographically dependent molecules is

Table 3

Equations of planes in the form $A x+B y+C z+D=0$ where x, y, z are fractional atomic co-ordinates; distances ($10^{3} \AA$) of relevant atoms from the planes are given in square brackets
Plane (I):

$$
\begin{aligned}
& \mathrm{O}(1), \mathrm{O}(2), \quad-4 \cdot 7140 x+3 \cdot 3771 y-2 \cdot 5250 z-0 \cdot 4203=0 \\
& \mathrm{C}(1)-(4) \\
& {[\mathrm{O}(1) 74, \mathrm{O}(2)-44, \mathrm{C}(1) 4, \mathrm{C}(2)-90, \mathrm{C}(3) 2, \mathrm{C}(4) 55, \mathrm{H}(1)-120,} \\
& \quad \mathrm{H}(2)-930, \mathrm{H}(3) 400, \mathrm{H}(4) 230] \\
& \text { Plane (II): } \\
& \mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right), \quad-4 \cdot 6981 x+3 \cdot 3794 y-2 \cdot 7004 z-0 \cdot 6281=0 \\
& \mathrm{C}\left(1^{\prime}\right)-\left(4^{\prime}\right) \\
& {\left[\mathrm{O}\left(1^{\prime}\right)-84, \mathrm{O}\left(2^{\prime}\right) 41, \mathrm{C}\left(1^{\prime}\right) 7, \mathrm{C}\left(2^{\prime}\right) 88, \mathrm{C}\left(3^{\prime}\right) 17, \mathrm{C}\left(4^{\prime}\right)-69,\right.} \\
& \left.\mathrm{H}\left(1^{\prime}\right)-330, \mathrm{H}\left(2^{\prime}\right) 1050, \mathrm{H}\left(3^{\prime}\right)-540, \mathrm{H}\left(4^{\prime}\right)-10\right]
\end{aligned}
$$

Plane (III) :
$\mathrm{O}(1), \mathrm{O}(2), \quad-4 \cdot 8777 x+3 \cdot 2665 y-4 \cdot 2133 z-0 \cdot 2388=0$ $\mathrm{C}(1), \mathrm{C}(2)$
$[\mathrm{O}(1)-6, \mathrm{O}(2)-6, \mathrm{C}(1) 17, \mathrm{C}(2)-5, \mathrm{C}(3) 190, \mathrm{C}(4) 327$, $\mathrm{H}(1)-240]$
Plane (IV):
$\mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right), \quad-4 \cdot 8847 x+3 \cdot 2536 y-4 \cdot 4898 z-0.2345=0$ $\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(2^{\prime}\right)$
$\left[\mathrm{O}\left(1^{\prime}\right) 1, \mathrm{O}\left(2^{\prime}\right) 1, \mathrm{C}\left(1^{\prime}\right)-4, \mathrm{C}\left(2^{\prime}\right) 1, \mathrm{C}\left(3^{\prime}\right)-182, \mathrm{C}\left(4^{\prime}\right)-358\right.$, $\left.\mathrm{H}\left(1^{\prime}\right)-200\right]$

Plane (V) : *
$O(1), O(2), \quad-4 \cdot 8608 x+3 \cdot 2625 y-4 \cdot 5142 z-0 \cdot 2467=0$ $\mathrm{C}(1), \mathrm{C}(2)$, $\mathrm{O}\left(1^{\prime}\right), \mathrm{O}\left(2^{\prime}\right)$, $\mathrm{C}\left(1^{\prime}\right), \mathrm{C}\left(2^{\prime}\right)$,
$\left[\mathrm{O}(1)-19, \mathrm{O}(2)-13, \mathrm{O}\left(1^{\prime}\right) 2, \mathrm{O}\left(2^{\prime}\right) 9, \mathrm{C}(1) 14, \mathrm{C}(2) 9, \mathrm{C}\left(1^{\prime}\right)-1\right.$, $\left.\mathrm{C}\left(2^{\prime}\right) 0, \mathrm{H}(1)-260, \mathrm{H}\left(1^{\prime}\right)-200\right]$
Plane (VI):
$\begin{aligned} & \mathrm{C}(1)-(4) \\ & {[\mathrm{C}(1) 0, \mathrm{C}(2)} \\ & -130]\end{aligned} \quad \mathrm{C}(3)-8944 x-3 \cdot 6093 y+3 \cdot 0227 z+0 \cdot 9464=0$
Plane (VII) :
$\mathrm{C}\left(4^{\prime}\right)-\left(4^{\prime}\right) \quad 3.9690 x-3 \cdot 6161 y+3 \cdot 0589 z+0.9699=0$ $\left[\mathrm{C}\left(1^{\prime}\right) 0, \mathrm{C}\left(2^{\prime}\right) 5, \mathrm{C}\left(3^{\prime}\right)-12, \mathrm{C}\left(4^{\prime}\right) 6, \mathrm{H}\left(2^{\prime}\right)-910, \mathrm{H}\left(3^{\prime}\right) 690\right.$, $\left.\mathrm{H}\left(4^{\prime}\right)-120\right]$

* Hydrogen bonded dimer.
$0.02 \AA$ and 0.7° for the heavy atoms, and $0.09 \AA$ and 5° where one hydrogen atom is involved.

The $-\mathrm{C}=\mathrm{C}$ - triple bond lengths ($1 \cdot 175$ and $1 \cdot 179 \AA$) are shorter than the commonly accepted value $(1 \cdot 206 \AA){ }^{13}$

The valence angles $\mathrm{C}_{\alpha}-\mathrm{C}-\mathrm{OH}, \mathrm{C}_{\alpha}-\mathrm{C}=\mathrm{O}$, and $\mathrm{HO}_{2^{-}}$ $\mathrm{C}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ of butynoic acid agree fairly well with the corresponding values in molecules of the type (III)

12 J. D. Dunitz and P. Strickler, 'Structural Chemistry and Molecular Biology,' eds. A. Rich and N. Davidson, Freeman. San Francisco, 1968, p. 595.
${ }^{13}$ Chem. Soc. Special Publ., No. 11, 1958.
(see Table 4). The intramolecular O (carbonyl) $\cdots \mathrm{C}_{\beta}$ distance is somewhat shorter in butynoic acid, and in

Figure 2 (a) Bond lengths (\AA) and (b) angles $\left({ }^{\circ}\right)[\mathrm{C}(1)-\mathrm{C}(2)-$ $\mathrm{H}(3)=107, \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)=112, \mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(3^{\prime}\right)=112$, and $\left.\mathrm{C}\left(3^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{H}\left(2^{\prime}\right)=109^{\circ}\right]$
the related cyanoacetamide ${ }^{10}$ than the corresponding distance in the aliphatic acids. ${ }^{14-18}$ (Table 4).
packing structure of butynoic acid (see Figures 3 and 4). The deviations from $\overline{1}$ symmetry are small according to the molecular co-ordinates of the primed and unprimed atoms. This centrosymmetric character is localised not only in the molecular pair; it describes, in fact,

Table 4

Valence angles (${ }^{\circ}$), and non-bonded distances (\AA) $\mathrm{C}_{\beta} \cdots \mathrm{O}$ (carbonyl) in $\mathrm{C}_{\beta} \cdot \mathrm{C}_{\alpha} \cdot \mathrm{CO}_{2} \mathrm{H}$

Compound	$\mathrm{HO}-\mathrm{C}-\mathrm{C}_{\alpha}$	$\mathrm{O}=\mathrm{C}-\mathrm{C}$	$\mathrm{C}-\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$	$\begin{gathered} \mathrm{C}_{\beta} \cdots \mathrm{O} \\ \text { (carbonyl) } \end{gathered}$
Propionic acid a	114	124	113	2.87
Butyric acid ${ }^{\text {b }}$	113	124	114	$2 \cdot 82$
Valeric acid ${ }^{\text {c }}$	117	125	113	$2 \cdot 88$
Succinic acid-Benzamide				
Complex ${ }^{\text {a }}$	111.5	$125 \cdot 3$	112.7	$2 \cdot 81$
β-Succinic acid ${ }^{e}$	112.9	$124 \cdot 5$	$113 \cdot 1$	$2 \cdot 82$
But-3-ynoic acid f	$114 \cdot 2$	$123 \cdot 5$	114.4	$2 \cdot 78$
Cyanoacetamide ${ }^{f, g}$		121.0	112.1	$2 \cdot 72$

${ }^{a}$ Ref. 14. ${ }^{b}$ Ref. 15. © Ref. 16. ${ }^{\text {a }}$ Ref. 17. © Ref. 18. f Mean values. g Ref. 10.
the symmetry of the (001) layer of hydrogen-bonded molecular pairs in the $x y$ plane (Figure 3). As the 'inversion centre' of the molecular pair ($x=0.3846$, $y=0.7501, z=0.0727$) lies halfway between the a glide planes, the pseudo-plane space group, of the (001) layer, regarded as a two-sided plane, is $P 12_{1} / a(1) .^{19}$

Short interatomic contacts are listed in Table 5. Along the stack axis b the closest contacts are O (carbonyl) \cdots O(hydroxy) (3.31 and $3.29 \AA$), and $\mathrm{H}(3) \cdots \mathrm{C}(3) \quad(3.19$ and $3.03 \AA)$. Along x, the molecular dimer is sandwiched between molecules related by the a glide operation such that the dihedral angle between the planes of successive carboxylic acid pairs is 78°. In this approach (Figure 4) the $\mathrm{C}\left(s p^{3}\right)-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$

Figure 3 Packing arrangement seen along [010]. The (010) layers L_{0}, L_{1}, and L_{2} each exhibits pseudo $P 12_{1} / a(1)$ symmetry

Packing.-A pseudo-centrosymmetric hydrogenbonded $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ dimer is the primary unit of the

[^1]contact provides the shortest interatomic distances $[\mathrm{C}-\mathrm{H} \cdots \mathrm{O} 3.45$ and $3.44 ; \mathrm{H} \cdots \mathrm{O} 2.63$ and $2.49 \AA$. ${ }^{17}$ Chi-Min Huang, L. Leiserowitz, and G. M. J. Schmidt, to be published.
${ }^{18}$ J. S. Broadley, D. W. J. Cruickshank, J. D. Morrison, J. M. Robertson, and H. M. M. Shearer, Proc. Roy. Soc., 1959, A, 251, 441.
${ }_{19}$ W. T. Holser, Z. Krist., 1958, 110, 249; K. DornbergerSchiff and H. Grell-Niemann, Acta Cryst., 1961, 14, 167.

The $\mathrm{C}-\mathrm{H}$ bond points towards the vicinity of the available lone-pair lobe of the carbonyl oxygen and also

Figure 4 Packing arrangement seen along the normal to the best plane through the carboxylic acid dimer of the shaded asymmetric pair. Some short intermolecular contacts (\AA) are shown, as well as the \boldsymbol{T} and \boldsymbol{G} labels denoting the $\mathrm{C} \cdot \mathrm{H} \cdots$ $\mathrm{C}: \mathrm{C}$ contact types

Table 5
Interatomic distances ($\leq 3.70 \AA$)

$A(000) * A(000)$		$\begin{aligned} & A(000) \\ & \mathrm{C}(3) \cdots \cdot \begin{array}{l} A(0 \overline{1} 0) \\ \mathrm{H}(3) \end{array}, ~ \end{aligned}$		3.185
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	2.216			
$\mathrm{O}(1) \cdots \mathrm{C}(2)$	$2 \cdot 345$			
$\mathrm{O}(1) \cdots \mathrm{H}(2)$	2.593	$A(000)$	$C(001)$	
$\mathrm{O}(1) \cdots \mathrm{H}(3)$	$2 \cdot 377$	C(4) \cdots	$\mathrm{C}\left(4^{\prime}\right)$	3.616
$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	2.647	H(4)	C($\mathbf{3}^{\prime}$)	$3 \cdot 131$
$\mathrm{O}(2) \cdots \mathrm{C}(2)$	2.383 2.780	H(4)	C(4')	$2 \cdot 963$
$\mathrm{O}(2)$ $\mathrm{O}(2)$$\cdots \mathrm{C}(3)$	2.780 3.517			
$\mathrm{O}(2) \cdots \mathrm{O}\left(1^{\prime}\right)$	${ }_{2 \cdot 692}$	$A(000)$	$A(010)$	
$\mathrm{O}(2) \cdots \mathrm{H}\left(1^{\prime}\right)$	1.808	$\mathrm{C}\left(2^{\prime}\right)$	H(3')	$3 \cdot 369$
$\mathrm{C}(1) \cdots \mathrm{C}(3)$	$2 \cdot 470$			
$\mathrm{C}(1) \cdots \mathrm{H}(2)$	2.043	${ }^{A}(000)$	${ }^{A}(010)$	
$\mathrm{C}(1) \cdots \mathrm{H}(3)$	1.885	$\mathrm{C}\left(3^{\prime}\right)$	$\cdot \mathrm{H}\left(3^{\prime}\right)$	3.028
$\mathrm{C}(3) \cdots \mathrm{H}(2)$	$\stackrel{2.055}{1.983}$	C(4 ${ }^{\text {¢ }}$	- $\mathrm{H}\left(3^{\prime}\right)$	3.275 3.294
$\mathrm{C}(3) \cdots \mathrm{H}(3)$	1.983	$\mathrm{O}\left(2^{\prime}\right)$	- $\mathrm{O}\left(1^{\prime}\right)$	3.294 3.484
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{O}\left(2^{\prime}\right)$	$2 \cdot 191$	$\mathrm{O}\left(2^{\prime}\right)$	H(3')	3.484
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{C}\left(2^{\prime}\right)$	2.299			
$\mathrm{O}\left(1^{\prime}\right) \cdots \mathrm{H}\left(2^{\prime}\right)$	2.525	$A(000)$	$D(010)$	
$\mathrm{O}\left(\mathbf{1}^{\prime}\right) \cdots \mathrm{H}\left(\mathbf{3}^{\prime}\right)$	2.472	$\mathrm{O}(1) \cdots$	$\mathrm{O}\left(1^{\prime}\right)$	3.049
$\mathrm{O}\left(2^{\prime}\right) \cdots \mathrm{C}\left(2^{\prime}\right)$	2.395	O(1)	H(1)	2.965
$\mathrm{O}\left(2^{\prime}\right) \cdots \mathrm{C}\left(3^{\prime}\right)$	2.788	C (2)	C(4)	3.679
		$\mathrm{C}(3) \cdot$	C(4)	3.678
${ }^{A}(0000) \quad A(000)$		H(1)	O(1)	2.594
$\mathrm{O}\left(\mathbf{2}^{\prime}\right) \cdots \mathrm{C}\left(4^{\prime}\right)$	3.562	$\mathrm{H}(1)$	H(1)	2.799
$\mathrm{C}\left(1^{\prime}\right) \cdots \mathrm{C}\left(3^{\prime}\right)$	$2 \cdot 486$	(1)		
$\mathrm{C}\left(1^{\prime}\right) \cdots \mathrm{H}\left(2^{\prime}\right)$	1.988			
	1.998 2.049	$\stackrel{A}{\text { O }}$ (1) $1 .$.	${ }_{\mathrm{O}}^{(2)}$	
$\mathrm{C}\left(3^{\prime}\right) \cdots \mathrm{H}\left(3^{\prime}\right)$	2.049 1.901	O(1) ${ }_{\text {Of }}(1)$	O(1)	3.168 3.053
	1.901	O(1).	C(11)	3.583 3.585
$A(000) \quad D(\overline{1} 10)$		$\mathrm{O}\left(\boldsymbol{2}^{\prime}\right)$	- C($\mathbf{1}^{\prime}$)	3.506 3.444
$\mathrm{O}(2) \cdots \mathrm{C}(1)$	3.513	$\mathrm{O}\left(2^{\prime}\right)$ $\mathrm{O}\left(2^{\prime}\right)$	- C(${ }^{\prime}$ ' ${ }^{\text {- }}$ (${ }^{\prime}$)	$3 \cdot 444$ $2 \cdot 493$
$\mathrm{O}(2)$ $\mathrm{O}(2)$$\cdots \mathrm{C}(2)$	3.450 2.627	$\mathrm{C}\left(3^{\prime}\right)$	$\cdots{ }^{-} \cdot{ }^{\text {H }}$	${ }_{3} \cdot 117$
$\mathrm{O}(2) \cdots \mathrm{H}(2)$ $\mathrm{C}(3) \cdots \mathrm{H}(2)$	$2 \cdot 627$ $\mathbf{3} 148$	$\mathrm{C}\left(4^{\prime}\right)$.	$\cdot \mathrm{H}\left(2^{\prime}\right)$	2.994
$\mathrm{C}(4) \cdots \mathrm{H}(2)$	2.920			
$\mathrm{O}(1) \cdots \mathrm{O}\left(2^{\prime}\right)$	3.157	$A(000)$	B (12I)	
		C(3) .		3.014
$A(000) \quad D(\overline{1} 20)$		$\mathrm{C}(4)$.	H(4')	$2 \cdot 785$
$\mathrm{C}\left(\mathbf{3}^{\prime}\right) \cdots \cdot \mathrm{H}\left(4^{\prime}\right)$	$3 \cdot 329$	H(4) .	- H(4')	$2 \cdot 787$

* Co-ordinates of equivalent positions:

$$
\begin{aligned}
& A x, y, z \\
& B-x,-y, \frac{1}{2}+z \\
& C-x, y, \frac{1}{2}+z \\
& D \frac{1}{2}+x,-y, z
\end{aligned}
$$

Where $A(p q r)$ denotes fractional co-ordinates $p+x, q+y$, $r+z$.
lies approximately in the plane of the carboxy-group containing this carbonyl oxygen.

The (001) layers are interlinked along z by contacts in which the acetylenic $\equiv \mathrm{C}-\mathrm{H}$ vector is directed towards the triple bond $: \mathrm{C}-\mathrm{H} \cdots \mathrm{C}: \mathrm{C}($ midpoint $)$. The crystal structure embodies two types of these $: \mathrm{CH} \cdots \mathrm{C} \vdots \mathrm{C}$ interactions (Figure 4) $\mathrm{C}\left(4^{\prime}\right)-\mathrm{H}\left(4^{\prime}\right) \cdots \mathrm{C}(3): \mathrm{C}(4)$ contacts (T) about the two-fold screw axis, and $\mathrm{C}(4)-\mathrm{H}(4)-$ $\cdots \mathrm{C}\left(\mathbf{3}^{\prime}\right): \mathrm{C}\left(4^{\prime}\right)$ contacts (\boldsymbol{G}) across the c glide plane. The $\mathrm{H} \cdots \mathrm{C}: \mathrm{C}($ midpoint $)$ distances are 3.0 and $2.9 \AA$. The $\mathrm{C}-\mathrm{H}$ bond, in the \boldsymbol{T} interaction, points fairly close to the centre of the $\mathrm{C}: \mathrm{C}$ bond; in the \boldsymbol{G} contact the $\mathrm{C}-\mathrm{H}$ vector is directed at a region above (or below) the $\mathrm{C}: \mathrm{C}$ bond axis.

The specific and attractive nature of this : $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$: C interaction may be gauged from the fact that the crystal structure of butynoic acid does not incorporate ethynylH \cdot. O contacts; whether butynoic acid can indeed form an acceptable structure with $: \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts is a question we shall consider by examining the packing mode of an analogous compound, cyanoacetamide. ${ }^{10}$

The structure (IV) consists of hydrogen-bonded dimers where the available $\mathrm{N}-\mathrm{H}$ bond is linked to a cyanogroup.

If butynoic acid adopts the isostructural arrangements $[(\mathrm{V})$ and (VI)], the group $-\mathrm{C} \equiv \mathrm{N} \cdot \cdots \mathrm{H}-\mathrm{N}$ ($\mathrm{N} \cdot \cdots \mathrm{HN}$ $3 \cdot 14 \AA$) is replaced by $-\mathrm{C}: \mathrm{C}-\mathrm{H} \cdot \mathrm{O}(\mathrm{O} \mathrm{CH} \cdots \mathrm{O} 3 \cdot 2-$ $3 \cdot 4 \AA$). ${ }^{20}$ Arrangement (V) contains a $: \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) interaction and requires an antiplanar conformation of the $\mathrm{O}: \mathrm{C} \cdot \mathrm{CH}_{2} \cdot \mathrm{C}: \mathrm{CH}$ group; the (preferred) synplanar conformation embodies a $\vdots \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (hydroxy) interaction (VI). The latter $\mathrm{CH} \cdots \mathrm{O}-\mathrm{C}$ interaction is probably less favourable than $\mathrm{CH} \cdots \mathrm{O}: \mathrm{C}$; it is nevertheless observed in the crystal structure of Laurencin, ${ }^{21}$ where the ethynyl hydrogen bond is directed midway between two ether oxygens (bifurcated $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bond) of an adjacent molecule but does not approach an (available) carbonyl oxygen. In the absence (so far) of either (V) or (VI), we conclude
pseudo-orthohombic arrangement (Figure 5), which consists of layers $L_{0}, L_{1}, L_{2}{ }^{\prime}, L_{3}$, where $L_{2}{ }^{\prime}$ is the L_{2} layer displaced by $a / 2$.

The sets L_{0} and $L_{2}{ }^{\prime}$ contribute to $F(h k l)$ for $h+l=$ $2 n$, and L_{1} and L_{3} contribute to $F(h k l)$ for $l=2 n$, from which we deduce that this structural model complies with the conditions for $h k l$ of the pseudoorthorhomic cell.

$$
\begin{gather*}
h k l: h=2 n, l=2 n \tag{1}\\
h k l: h=2 n+1, l=2 n, l=2 n+1 \tag{2}
\end{gather*}
$$

The intensity diffraction pattern of the pseudo-cell for $h k l, h=2 n$ is the same as that of the $P c a 2_{1}$ form, which is in keeping with the postulated structure, as

Figure 5 Postulated packing arrangement of the pseudo-orthorhombic structure including the outline of the pseudomonoclinic cell $\left(a_{\mathrm{B}} b_{\mathrm{B}} c_{\mathrm{B}}\right)$ for the $L_{0} L_{1} L_{2}^{\prime}$ layers as seen along [010]. The \boldsymbol{T} and $\overline{\boldsymbol{T}}$, and \boldsymbol{G} and $\overrightarrow{\boldsymbol{G}} \cdot \mathrm{C}: \mathrm{C} \cdot \mathrm{H} \cdots \mathrm{C}: \mathrm{C}$ contacts
tentatively that the $\mathrm{C}\left(s p^{3}\right)-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) and $\equiv \mathrm{C}-\mathrm{H} \cdots \mathrm{C}: \mathrm{C}($ midpoint $)$ interactions in the observed structure override the ethynyl- $\mathrm{H} \cdots \mathrm{O}$ forces in the hypothetocal arrangements (V) and (VI).

The Pseudo-orthorhombic (O/D) Structure.-The selection rules governing the diffraction spectrum of the pseudo-orthorhombic O/D structure may be interpreted by assuming every fourth (001) layer of the $P c a 2_{1}$ structure to be displaced by $a / 2$. Although these rules may be easily derived from the co-ordinates of the equivalent positions of this postulated cell (Table 6),

Table 6

Co-ordinates of the equivalent positions of the postulated model of the pseudo-orthorhombic cell, and the (001) layers L_{i} (Figure 5) which correspond to these equivalent positions
(001) Layer

Equivalent positions

$$
\begin{array}{lll}
L_{0} & x, y, z ; & \frac{1}{2}+x,-y, z \\
L_{1} & \frac{1}{2}-x, y, \frac{1}{4}+z ;-x,-y, \frac{1}{4}+z \\
L_{2}^{\prime} & \frac{1}{2}+x, y, \frac{1}{2}+z ; x,-y, \frac{1}{2}+z \\
L_{3} & \frac{1}{2}-x, y, \frac{3}{4}+z ;-x,-y, \frac{3}{4}+z
\end{array}
$$

we shall adopt the following procedure to show the compatibility of the suggested model.

The consecutive (001) layers [with pseudo $P 12_{1} / a(1)$ symmetry] of the refined $\mathrm{Pca} 2_{1}$ structure are labelled $L_{0}, L_{1}, L_{2}, L_{3}\left[L_{i}=L_{i+2}\right.$, see Figure 3] and construct a
${ }^{20}$ G. A. Sim, Ann. Rev. Phys. Chem., 1967, 18, 57.
${ }^{21}$ A. F. Cameron, K. K. Cheung, G. Ferguson, and J. M. Robertson, J. Chem. Soc. (B), 1969, 559.
this reflection set is unaffected by any layer displacement of $a / 2$. The model consisting of layers L_{0}, L_{1}, $L_{2}{ }^{\prime}, L_{3}{ }^{\prime}$, where both L_{2} and L_{3} are displaced by $a / 2$, is ruled out for the systematic absences would be $h k l: h+$ $l=2 n+1$. The postulated structure $L_{0}, L_{1}, L_{2}{ }^{\prime}, L_{3}$ is supported by a comparison of the variation of the calculated structure factors of the $11 l$ reflection set with the observed $11 l$ intensities (Table 7).

Table 7

The $11 l(l=0-20)$ reflection set of the pseudo-orthorhombic cell listing the calculated structure factors of the model $L_{0} L_{1} L_{2}{ }^{\prime} L_{3}$ and the observed $11 l$ film intensities

$h=1, k=1 \quad l$	$\left\|F_{\mathrm{c}}\right\|$	I	$h=1, k=1 \quad l$	$\left\|F_{c}\right\|$	I
0	126	S	11	14	w
1	136	s	12	6	w
2	56	s	13	24	w
3	105	s	14	35	m
4	28	m	15	34	m
5	41	m	16	61	S
6	57	m	17	34	s
7	2	w	18	54	s
8	33	w	19	21	m
9	13	vw	20	30	m
10	1	vw			

The O/D structure involving (001) layer misregistry of the pseudo-cell would induce streaking along c^{*} for reciprocal rods $h k l$ where $h=2 n+1$.

The displacement of the L_{2} layer by $a / 2$ does not
bring about drastic changes in the interlayer ($L_{1} \ldots L_{2} \ldots L_{3}$) contacts. The effect is rather one of replacing a \boldsymbol{T} type $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ contact (Figure 4) by an interaction labelled $\overline{\boldsymbol{G}}$, as its geometry closely resembles the G type $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}=\mathrm{C}$ contact; similarly, the \boldsymbol{G} contact is converted into a $\overline{\boldsymbol{T}}$ type. The relationship between the contact types \boldsymbol{T} and $\overline{\mathbf{T}}$, and \boldsymbol{G} and $\overline{\boldsymbol{G}}$, upon displacement of an (001) layer by a/2 is shown as follows.

Let us construct a subcell $a_{\mathrm{s}}, b_{\mathrm{s}}, c_{5}$ (Figure 5) comprising the layer set $L_{0}, L_{1}, L_{2}{ }^{\prime}$ of the pseudo-orthorhombic cell $a_{\mathrm{p}}, b_{\mathrm{p}}, c_{\mathrm{p}}$. The transformation is: $a_{\mathrm{s}}=a_{\mathrm{p}}, b_{\mathrm{s}}=b_{\mathrm{p}}$, and $c_{\mathrm{s}}=\frac{1}{2} a_{\mathrm{p}}+\frac{1}{2} c_{\mathrm{p}}$.

If the origin (000) of this subcell is fixed in the layer L_{0} at the centre of the refined molecular dimer whose co-ordinates in the pseudo-orthorhombic cell are $x_{\mathrm{p}}=$ $0.3846, y_{\mathrm{p}}=0.7501, z_{\mathrm{p}}=0.0727 / 2$.

Therefore the transformation relating the co-ordinates $x_{\mathrm{p}} y_{\mathrm{p}} z_{\mathrm{p}}$ and $x_{\mathrm{s}} y_{\mathrm{s}} z_{\mathrm{s}}$ is:

$$
\left[\begin{array}{rrr}
-1 & 0 & 1 \\
0 & 1 & 0 \\
2 & 0 & 0
\end{array}\right]\left[\begin{array}{ll}
x_{\mathrm{p}} & -0.3846 \\
y_{\mathrm{p}} & -0.7501 \\
z_{\mathrm{p}} & -0.0364
\end{array}\right]=\left[\begin{array}{l}
x_{\mathrm{s}} \\
y_{\mathrm{s}} \\
z_{\mathrm{s}}
\end{array}\right]
$$

The molecular dimer, with the 'inversion centre' at $x_{\mathrm{p}} y_{\mathrm{p}} z_{\mathrm{p}}=\frac{1}{2}+0.3846,2-0.7501, \quad \frac{1}{4}+0.0364$ (layer L_{1}, Figure 5), has co-ordinates $x_{\mathrm{s}} y_{\mathrm{s}} z_{\mathrm{s}}$ of $0.0192,0.4987$, 0.4616 in the subcell. As this point lies close to $0, \frac{1}{2}, \frac{1}{2}$ we may regard the subcell as pseudo-monoclinic $P 2_{1} / a$ (Figure 5), and so the layer set $L_{0}, L_{1}, L_{2}{ }^{\prime}$ comprises a pseudo-centrosymmetric group.

Consequently the \boldsymbol{T} and \boldsymbol{G} type $\mathrm{C}-\mathrm{H} \cdots \mathrm{C} \equiv \mathrm{C}$ contacts linking the layers L_{0} and L_{1} are matched by a set of 'centrosymmetrically related' $\overline{\boldsymbol{T}}$ and $\overline{\boldsymbol{G}}$ contacts linking layers L_{1} and L_{2}^{\prime} (Figure 5).

A fundamental difference between the Pca2 and the (postulated) pseudo-orthorhombic structures lies in the distribution of these \boldsymbol{T} and \boldsymbol{G} contacts. In the former structure the molecules are linked, along z, by chains of $\boldsymbol{T} \cdot \mathbf{T} \cdot \boldsymbol{T} \cdot \mathbf{T} \cdot \boldsymbol{T} \cdot$ and $\boldsymbol{G} \cdot \boldsymbol{G} \cdot \boldsymbol{G} \cdot \boldsymbol{G} \cdot \boldsymbol{G} \cdot$ contacts which alternate in the x direction; in the postulated pseudo-orthorhombic structure these respective chains are replaced by $\boldsymbol{T} \cdot \mathbf{T} \cdot \overline{\boldsymbol{G}} \cdot \overline{\boldsymbol{G}} \cdot \mathbf{T} \cdot \mathbf{T} \cdot \overline{\boldsymbol{G}} \cdot \overline{\boldsymbol{G}} \cdot$ and $\boldsymbol{G} \boldsymbol{G} \cdot \overline{\boldsymbol{T}} \overline{\mathbf{T}} \cdot \boldsymbol{G} \boldsymbol{G} \cdot \overline{\mathbf{T}} \overline{\mathbf{T}} \cdot$ contacts.

We acknowledge partial support by a Minerva grant.
[1/1291 Received, 26th July, 1971]

[^0]: ${ }^{11}$ L. Leiserowitz and G. M. J. Schmidt, Acta Cryst., 1965, 18, 1058.

[^1]: ${ }^{14}$ F. J. Strieter, D. H. Templeton, R. F. Scheuerman, and R. L. Sass, Acta Cyyst., 1962, 15, 1233.
 ${ }_{15}$ F. J. Strieter and D. H. Templeton, Acta Cryst., 1962, 15, 1240.
 ${ }_{16}$ R. F. Scheuerman and R. L. Sass, Acta Cyyst., 1962, 15, 1244.

